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1. CS sparse reconstruction 

CS sparse reconstruction is a method to finding sparse solutions to under-determined, 

or ill-conditioned, linear systems of equations
8,9

. The measurement model can be 

expressed as 

    y Ax e A e .                                                  (1) 

where A is an M×N sensing matrix (M<<N), y (an M×1 vector) is the measurement 

signals and e (an M×1 vector) denotes the detection noise. x (an N×1 vector) is the 

original image and can be represented as x=Ψ  such that   is sparse (namely there are 

only S non-zero entries in the column vector  , S<<N and Ψ  is an N×N transform 

matrix). And the convex optimization program of CS sparse reconstruction is
30

 

2

2 1

1
; which minimizes: 

2
    x y Ax .                             (2) 

where τ  is a nonnegative parameter, 
2

V and 
1

V  represent the Euclidean norm and the 

1
-norm of V, respectively. 

By now, there are many sparse reconstruction algorithms to solve the convex 

optimization program described in Eq. (2). For example, gradient projection for sparse 

reconstruction, iterative shrinkage/thresholding, matching pursuit, 
1
-magic, orthogonal 

matching pursuit, and compressive sampling matching pursuit
30

. 

2. The measurement framework of 3D GISC lidar 

As shown in Supplementary Figure 1, the measurement process of 3D GISC lidar 

can be expressed as follows in the framework of CS sparse reconstruction: 

(1) When the laser emits a pulse, the rotating diffuser will modulate the laser and 

produce a random speckle pattern. The CCD in the reference path will record the speckle 

pattern's 2D gray distribution Ii (m×n pixels, =1i M ) (see Supplementary Figure 1. a1-

aM) and we reshape each Ii into a row vector (1×N, N=m×n). Correspondingly, the PMT 

connected with a high-speed digitizer of 1 G/s will record the time-resolved one-

dimensional intensity distribution 
Q

iI  (1×Q time delays, =1i M ) (see Supplementary 
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Figure 1. b1-bM) because both the time delays and intensities of the light signals reflected 

form the target's different parts are different. 

(2) After M independent modulations, we can obtain M frames of independent 2D 

gray distributions, then the sensing matrix A (M×N) of CS sparse reconstruction can be 

obtained. Correspondingly, the M independent time-resolved one-dimensional 

distributions are used to form the measurement data Y (Y=[y
1
, y

2
, …, y

q
, … , y

Q
], y

q
 is an 

M×1 vector, =1q Q ). 

(3) Based on the CS sparse reconstruction model described in Eq. (1), the 

measurement process of 3D GISC lidar can be expressed as 

Y AX E A O E     .                                                 (3) 

where X (X =[x
1
, x

2
, …, x

q
,…, x

Q
], x

q
 is an N×1 vector, =1q Q ) denotes the original 3D 

image and O is the sparse representation vector of X by Ψ transform. E (E=[e
1
, e

2
, …, 

e
q
, …, e

Q
], e

q
 is an M×1 vector, =1q Q ) is the detection noise. 

3. Image reconstruction of 3D image 

Considering the structure property of 3D images in depth direction, the target's 3D 

image can be reconstructed by solving the following convex optimization program
27
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1
X O; which minimizes: Y-AX O (X)

2
      c .                 (4) 

where (X)  denotes the mutual coherence function described by Eq. (7) of Ref. (27) and 

 c
 is a nonnegative parameter determined by the coherence between the tomographic 

images of neighbor depths. 

Based on the image reconstruction algorithm of 3D GISC lidar described above, the 

animation of rotating the tower and the scene demonstrated in the manuscript are 

provided by the files entitled 3D-tower.AVI and 3D-scene.AVI, respectively. 

4. The transverse resolution of the lidar system and the depth resolution 

4.1. The design of the system’s spatial transverse resolution 

In accordance to the principle of ghost imaging, the system’s transverse resolution is 

determined by the transverse size of speckle pattern on the object plane, which is given 
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by the Van Cittert Zernike theorem, namely =
z

x
w


 , where λ is the wavelength of the 

source, z is the axial distance and w is the beam waist
11,12,18,27

. For the setup of proposed 

3D GISC lidar, in order to build the correlation between two paths, the speckle pattern at 

stop 1 is imaged onto the target by the objective lens f0=360 mm and the CCD camera by 

the reference lens f1, respectively. What’s more, the transverse size of light beam at the 

objective and reference lens is controlled by the stop 2 shown in Fig. 1, which ensures 

that the entrance pupil is exactly the same for the lens f0 and f1. Therefore, when the 

transmission aperture of the stop 2 is large enough, the transverse size of speckle pattern 

on the target plane and the CCD camera are =t tx M x   and =r rx M x  , respectively, 

where Mt and Mr are the magnification of imaging system in the test and reference paths. 

If the transmission aperture of the stop 2 is too small such that the transmission aperture 

of the objective lens f0 and the reference lens f1 are restricted, then the transverse size of 

speckle pattern on the target plane and the CCD camera will be 01.22
=t

t

l
x

L


  and 

= t
r r

t

x
x M

M


 . For the experimental demonstration, we have chosen the second case. 

Therefore, when the transverse size of speckle pattern on the target plane is 01.22
=t

t

l
x

L


 , 

the transverse size of speckle pattern on the CCD camera will be 0

0

= t r t
r r

t

x M f x
x M

M l

 
  . 

4.2. The depth resolution for 3D GISC lidar 

For 3D GISC lidar, similar to the Rayleigh criterion of spatial transverse resolution, 

when the difference of the photon’s fight time from two objects is smaller than the laser’s 

pulse width, the reflected signal, like the curve shown in Fig.2a, can not be resolved, 

which will cause the phenomenon that the information of two objects appear in the same 

tomographic image. However, the relative intensities of the two objects’ tomographic 

images are different in different depths. In the process of 3D image reconstruction, except 

for exploiting the general assumption of the image’s sparsity, we have also used the  

priori knowledge that the target's images at different depths have no spatial overlap for a 
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surface 3D images, thus the time delay with the largest intensity for each fixed space 

position (x,y) will be the distance of the target’s corresponding space position range from 

the lidar system. Based on the technique of image reconstruction, the depth resolution of 

3D GISC lidar will be higher than that determined by the laser’s pulse width. 

 

 

References 

30. Figueiredo, M. A., Nowak, T. R. D. & Wright, S. J. Gradient Projection for Sparse 

Reconstruction: Application to Compressed Sensing and Other Inverse Problems. IEEE J. 

Sel. Top. in Sig. Proc. 1, 586-597 (2007). 



 

 

 5 

 

Supplementary Figures 
 

 

Supplementary Figure 1: The measurement framework of 3D GISC lidar system 

with pseudo-thermal light. a1-aM are the speckle pattern's 2D gray distributions recorded 

by the reference CCD in different modulations. b1-bM are the corresponding time-

resolved one-dimensional intensity distribution recorded by the time-resolved single-

pixel bucket detector in the object path. 
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Supplementary captions of Movies 

 

 

3D-tower.AVI 

Supplementary Movie 1. The animation of rotating the tower shown in Fig. 2. 

 

 

 

3D-scene.AVI 

Supplementary Movie 2. The animation of rotating the scene shown in Fig. 3. 

 
 


